DEVELOPMENT OF AN ELECTROTHERMAL ICE PROTECTION SYSTEM FOR WIND TURBINE APPLICATIONS

IWAIS Conference

September 7th – 11th, 2009

Presenter: Dave O'Hern

Authors: Dave O'Hern, Galdemir Botura, Ken Fisher and Darren Jackson

Goodrich Corporation

Agenda

- Who is Goodrich?
- Goodrich Aerospace Ice Detection / Protection Capability Overview
- Goodrich Ice Detector Principles & Evolution
- Goodrich COST-727 Involvement
- Goodrich Model 0872N1 Development
- Goodrich Electrothermal Heater Assembly Technology
- Goodrich Heater Assembly Test Set-Up
- Goodrich Heater Assembly Testing Results
- Goodrich Heater Assembly Testing Conclusion
- Goodrich Heater Assembly Next Steps

Goodrich Ice Detection / Protection Centers of Excellence

right attitude/right approach/right alongside

Goodrich Global Presence

right attitude/right approach/right alongside

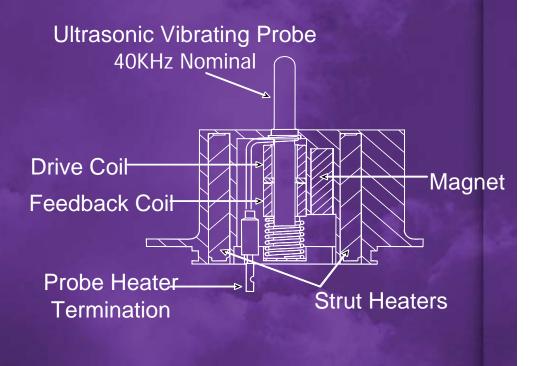
Goodrich Ground Based Ice History

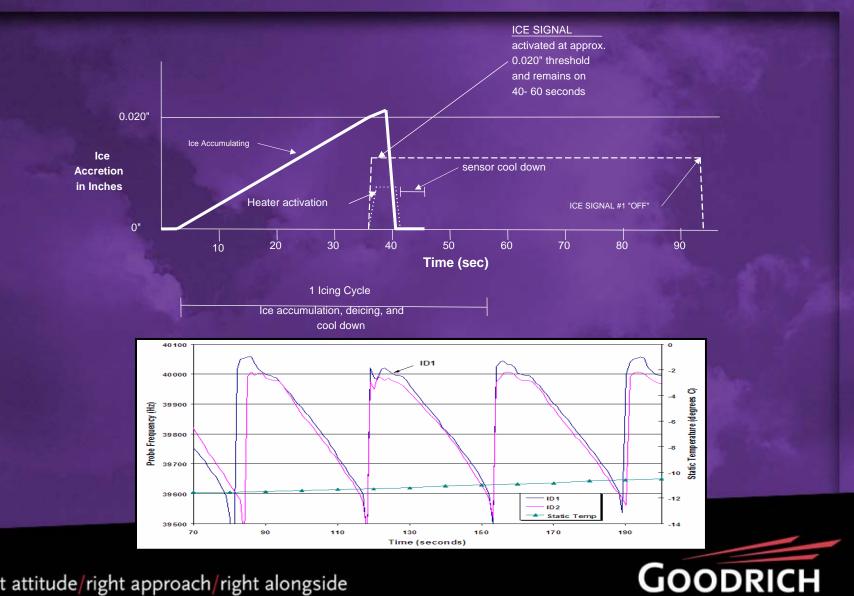
- Goodrich (Rosemount) 40+ year history of providing high accuracy ground based sensors
 - Anemometers
 - Ice detectors
 - Freezing rain detectors
- Goodrich (De-Icing & Specialty Systems) 75+ year history of providing ice protection systems
 - Pneumatic Systems
 - Structural Composites
 - Electrothermal Systems
- Long history of working with North America Meteorological Organizations
 - NASA
 - NOAA
 - Environment Canada
 - US Air Force
- Goodrich specializes in specialty heated instruments and integrated system solutions

Goodrich Ice Detection Leadership

- Goodrich is a World Market Leader in Ice Detection Systems
 - Over 5,000 ice detectors produced on an annual basis
- Over 40 years In-Service Experience on over 100 aircraft and numerous wind turbines, radio towers, AWOS/ASOS stations, etc...
- Ice Detectors certified by FAA/EASA, Military and UL/CSA/CE
- Goodrich Ice Detection Technology Advantages:
 - Accurate Detection and low false alarms
 - Solid De-icing Capabilities
 - Robustness (Vibration, Temperature, EMI, etc...)
 - High Reliability

GOODRICH


- Various Ice Detection Technologies Available
 - Magnetostrictive (most common)
 - Thermal Icing Conditions Detector
 - Optical Ice Detection
- Capabilities Include:
 - Ice / No Ice
 - Icing Rate and LWC Measurements
 - Liquid Water / Ice Crystal Differentiation


Magnetostriction Ice Detection Principles

- The Goodrich Ice Detector probe and electronics are tuned to resonate at approximately 40 KHz.
- The probe is made of a magnetic material and is forced to resonate at its natural frequency by magnetostriction.
- Magnetostriction is the ability of certain materials to expand or contract in the presence of a magnetic field.
- As ice accretes on the probe, the resonant frequency reduces due to the added ice *mass*.
- Reduction of the probe frequency below a predetermined threshold causes the ICE signal to be activated and the strut and probe to be deiced.

Magnetostriction Ice Accretion Cycle

right attitude/right approach/right alongside

www.goodrich.com

Goodrich Ice Detector Evolution

OBT2DE Family Ground Turbine EnginesRugged Environment Analog I/O Interface0872CE 0872DE	Improved Detection Near 0°C RS-232 Digital Comm0872C3 R972E3 0872E3 0872E1	<image/> <section-header><section-header><section-header><section-header><text><text></text></text></section-header></section-header></section-header></section-header>	<image/> <section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header>	OBST2N1 FamilyRadio TowersMet StationsWind TurbinesSevere EnvironmentImproved DeicingDiscrete I/O, RS-4220871CB10872B120872J10872N1
1967 - 0871CB1	1984 - 0872	2B12	2003 - 0871LP1	2004 - 8204A
960's	1970's 19	980's 1990's	2000's	
966 - 0872DC	1970 - 0872DE	1991 - 0872C3	1995 - 0872F1	2009 - 0872N1
right attitude/right approach/right alongside			G	OODRICH

COST-727 Involvement

GOODRICH

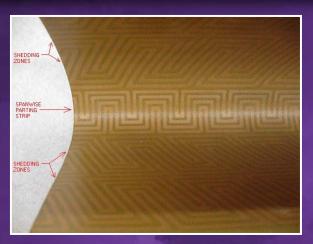
- Goodrich has donated Model 0871LH1 ice detectors to COST-727
- Model 0871LH1 was developed and designed for low power applications and light duty icing (i.e. wind turbines)
- Preliminary COST-727 test results indicate:
 - LH1 model detected ice well under most environments
 - Some deicing problems experienced with no strut heater
 - Validated the market need for a more robust ground based ice detector
- Proposed Improvement / Solution
 - Implement Model 0872N1 for severe environments
- Goodrich intends to actively review/monitor Model 0872N1 performance and incorporate improvements as necessary during the next COST Action

Model 0872N1 Development

- Replaces Goodrich Model 0871CB1, 0872B12, and 0872J1
- Potential Applications
 - Meteorological Stations
 - Wind Turbines
 - Radio/TV Towers
- Features:
 - 2 Ice and 1 Fail Outputs
 - Capable of Driving Relays
 - Robust BIT Testing
 - Power-Up, Initiated, and Continuous
 - Full De-icing capability (both strut and sensing probe)
 - Approx. 300W power, 115 or 230 VAC versions
 - RS-422 Serial Output
 - Probe frequency, Heater and Ice/Fail activation, Failure history
- Two units provided to Meteotest for 2009-2010 winter testing
- Safety, Performance and EMI Certification testing (UL/CSA/CE) to be completed by end of 2009

How Aircraft In-Flight Icing Removed?

Goodrich has over 40 years experience integrating electrothermal IPS technologies with various structures



What is a Heater Assembly?

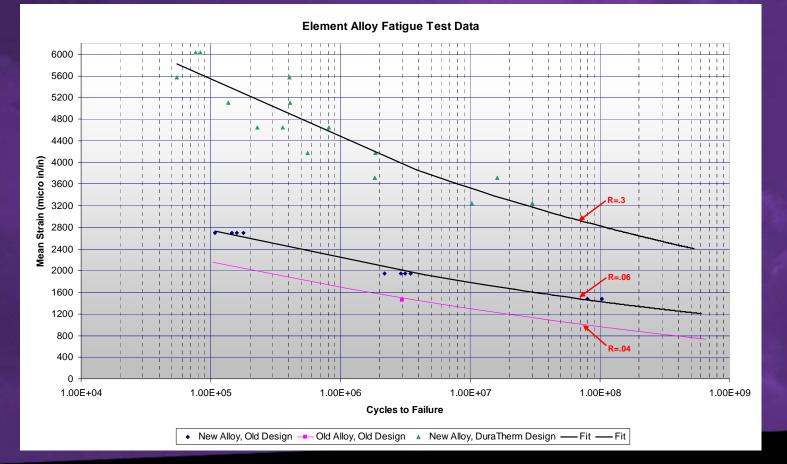
- The technology behind the Goodrich Electrothermal Heater Assemblies consists of:
 - Elastomeric
 - Flexible heater assemblies with elastomeric insulation
 - Metal Clad
 - Heater assemblies insulated with plies of fiberglass/epoxy and protected with a metallic outer cladding
 - Anti-Icers
 - Heater Assemblies that prevent the formation of ice on a protected surface
 - De-Icers
 - Heater Assemblies that cyclically removes ice from a protected surface
 - The Wind Turbine Blade Electrothermal Heater Assemblies may utilize both Ant-Icer and De-Icer technologies
 - Heaters can be integrated into composite structures

Electrothermal Heater Assembly Technology

Electrothermal Heater Assembly Samples Electrothermal Heater Assembly Cross-Section

right attitude/right approach/right alongside

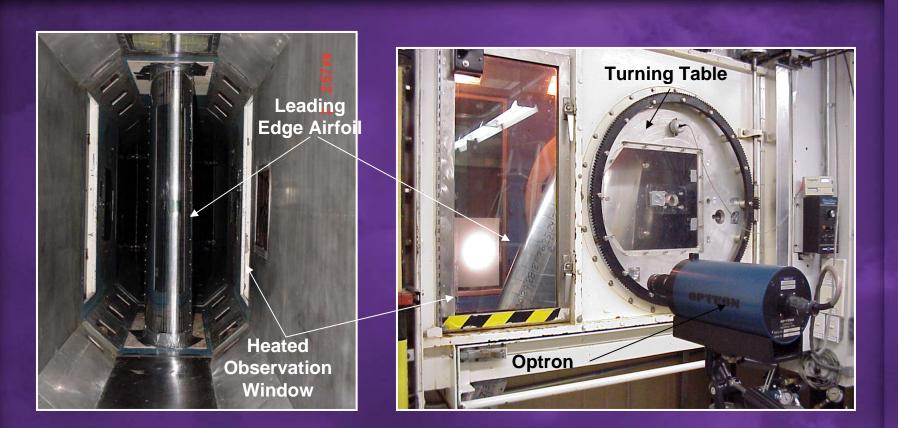
Leading Edge Surface


Fiberglass / Carbon Fiber / Epoxy

Heating Element

Integrated Film Adhesive

Electrothermal Heater Assembly Technology


Standard Heater Element: New vs. Old Alloy Fatigue Strength

right attitude/right approach/right alongside

GOODRICH

Heater Assembly Test Set-Up

Icing Wind Tunnel – Forward Looking (Spray System) View Icing Wind Tunnel – Side View

Heater Assembly Testing

Simulated Wind Turbine Blade Test

- Hybrid Electrothermal System
 - De-icing and Anti-icing
 - Composite leading edge structure

 Leading Edge with 0.050" - 0.020" (1.27mm – 0.508mm) Gelcoat

IWT Heater Assembly Video

Tested at -4°F (-20°C)

Heater Assembly Testing

Heater Assembly Testing Results

- The electrothermal system produced successful icing wind tunnel test results
- Ability to Shed Ice Very Thin
- Graphite heater assembly tested for 1,000,000 temperature endurance cycles
- Electrical connections tested for extreme temperature from -200°F (-129°C) to +300°F (149°C) without degradation
- Heater Assembly reliability in order of 1 failure per 500,000 flight hours

Conclusion

GOODRICH

- Goodrich electrothermal heater assembly technology has been installed on various rotorcraft and engine propellers with proven performance and reliability
- Goodrich aerospace Ice Protection Systems can be converted to wind turbine applications
- Goodrich extensive experience in ice protection development provides unique capabilities to minimize project risk
 - Internal test facilities:
 - Icing Wind Tunnel
 - Rain Erosion Facility
 - Advanced Ice Testing methods
- Goodrich provides complete integrated solutions for ground based applications
 - Ice Detection, Ice Protection and Heath Monitoring Systems

On-Going Efforts

- Development of Model 0872N1 harsh weather ice detector
- Development of cost effective Ice Protection System (Heater assemblies, controllers and wiring integration)
- Looking for the right Ice Protection System collaboration for near-term and future ground based test platforms and applications

The Goodrich Website

For more Information

Visit the Goodrich Website: <u>www.goodrich.com</u>

- Business Segments
- Capabilities
- Literature
- Product Overviews
- Pedigree

right attitude/right approach/right alongside

QUESTIONS ???

